Telegram Group & Telegram Channel
Что произойдёт, если использовать LabelEncoder с линейным алгоритмом?

▶️ Начнём с того, что такое LabelEncoder.
Это один из самых простых способов закодировать категории. Допустим, у вас есть три категории: «Лондон», «Париж» и «Москва». Тогда вы просто заменяете эти строковые значения на 0, 1 и 2.

В документации scikit-learn написано, что LabelEncoder кодирует целевые метки значениями из диапазона от 0 до n_classes-1 (где n_classes — количество классов). То есть алгоритм предлагается использовать в основном для кодирования целевых меток. Технически его, конечно, можно применять для кодирования нецелевых признаков. Но тут могут возникнуть проблемы.

✍️ Сама суть LabelEncoder способствует созданию избыточных зависимостей в данных. Например, после преобразования получилось, что по некоторому признаку значение объекта Volvo равно 6, а BMW — 1. Можно интерпретировать это как то, что Volvo в 6 раз в чём-то превосходит BMW. Однако в исходных данных таких зависимостей не было.

При работе с категориальными переменными для линейных моделей можно, например, использовать One-Hot Encoding.

#машинное_обучение



tg-me.com/ds_interview_lib/224
Create:
Last Update:

Что произойдёт, если использовать LabelEncoder с линейным алгоритмом?

▶️ Начнём с того, что такое LabelEncoder.
Это один из самых простых способов закодировать категории. Допустим, у вас есть три категории: «Лондон», «Париж» и «Москва». Тогда вы просто заменяете эти строковые значения на 0, 1 и 2.

В документации scikit-learn написано, что LabelEncoder кодирует целевые метки значениями из диапазона от 0 до n_classes-1 (где n_classes — количество классов). То есть алгоритм предлагается использовать в основном для кодирования целевых меток. Технически его, конечно, можно применять для кодирования нецелевых признаков. Но тут могут возникнуть проблемы.

✍️ Сама суть LabelEncoder способствует созданию избыточных зависимостей в данных. Например, после преобразования получилось, что по некоторому признаку значение объекта Volvo равно 6, а BMW — 1. Можно интерпретировать это как то, что Volvo в 6 раз в чём-то превосходит BMW. Однако в исходных данных таких зависимостей не было.

При работе с категориальными переменными для линейных моделей можно, например, использовать One-Hot Encoding.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/224

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

A project of our size needs at least a few hundred million dollars per year to keep going,” Mr. Durov wrote in his public channel on Telegram late last year. “While doing that, we will remain independent and stay true to our values, redefining how a tech company should operate.

Библиотека собеса по Data Science | вопросы с собеседований from hk


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA